Ranges and Resolution

See table below for popular ranges. Consult factory for special engineering units. Resolution is fixed as indicated. For ranges requiring 4 digits or more display resolution use F18L. For pressure ranges greater than 2000 psi use model F18L3000PSIG or F18L6000PSIG. See www.cecomp.com/loop.

<table>
<thead>
<tr>
<th>Pressure Range</th>
<th>Units</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>3PSIG</td>
<td>inHg</td>
<td>±0.05%FS</td>
</tr>
<tr>
<td>5PSIG</td>
<td>cmH2O</td>
<td>±0.01%FS</td>
</tr>
<tr>
<td>15PSIA</td>
<td>kPa</td>
<td>±0.01%FS</td>
</tr>
<tr>
<td>15PSIVAC</td>
<td>bar</td>
<td>±0.01%FS</td>
</tr>
<tr>
<td>±15PSIVAC</td>
<td>Torr</td>
<td>±0.01%FS</td>
</tr>
<tr>
<td>15PSIG</td>
<td>atm</td>
<td>±0.01%FS</td>
</tr>
<tr>
<td>30PSIG</td>
<td>mbar</td>
<td>±0.01%FS</td>
</tr>
<tr>
<td>60PSIG</td>
<td>mbar</td>
<td>±0.01%FS</td>
</tr>
<tr>
<td>100PSIG</td>
<td>mbar</td>
<td>±0.01%FS</td>
</tr>
<tr>
<td>200PSIG</td>
<td>mbar</td>
<td>±0.01%FS</td>
</tr>
<tr>
<td>500PSIG</td>
<td>mbar</td>
<td>±0.01%FS</td>
</tr>
<tr>
<td>1000PSIG</td>
<td>mbar</td>
<td>±0.01%FS</td>
</tr>
<tr>
<td>2000PSIG</td>
<td>mbar</td>
<td>±0.01%FS</td>
</tr>
<tr>
<td>1220 INH2O</td>
<td>mbar</td>
<td>±0.01%FS</td>
</tr>
<tr>
<td>2000 INH2O</td>
<td>mbar</td>
<td>±0.01%FS</td>
</tr>
<tr>
<td>4000 INH2O</td>
<td>mbar</td>
<td>±0.01%FS</td>
</tr>
<tr>
<td>6000 INH2O</td>
<td>mbar</td>
<td>±0.01%FS</td>
</tr>
<tr>
<td>10000 INH2O</td>
<td>mbar</td>
<td>±0.01%FS</td>
</tr>
</tbody>
</table>

Accuracy

Accuracy includes linearity, hysteresis, repeatability

Standard accuracy: ±0.25% of full scale ±1 least significant digit

HA accuracy option: ±0.1% FS ±1 LSD, see ranges for availability

Sensor hysteresis: ±0.015% FS, included in accuracy

Sensor repeatability: ±0.01% FS, included in accuracy

Display

3.5 digit LCD, 0.5” digit height (indicates to 1999)

3 readings per second nominal display update rate

Controls

Non-interactive zero and span, ±10% range

Output test adjustment: 0-100% range

Retransmission zero and span: Internal potentiometers

Loop Supply Voltage

Any DC supply/loop resistance that maintains 8 to 32 VDC at gauge terminals

Gauge is reverse polarity protected

3 ft long, 2-conductor 22 AWG cable with stripped and tinned wire ends

Output Characteristics

True analog output. 50 millisecond typical response time

For proper operation gauge terminal voltage must be above 8 VDC at all times.

Test Function

Front panel TEST button, when depressed sets loop current and display to output test level, independent of pressure input, to allow testing of system operation.

Weight

9 ounces (approx.)

Shipping wt. 1 pound (approx.)

Housing

Standard: Epoxy powder coated aluminum case and rear cover. ABS/polycarbonate gaskets. Polypropylene label.

NEMA 4X: UV stabilized ABS/polycarbonate case and rear cover. Gasketed rear cover with six captive stainless steel screws. Poly carbonate label.

Dimensions

Standard: 3.38” W x 2.88” H x 1.65” D housing

NEMA 4X: 4 X sensor pressure rating, or 10,000 psi, whichever is less

Add approximately 1” to depth for strain relief and wire clearance

Connection and Material

1/4” NPT male fitting

Add approx. 1” to depth for strain relief and wire clearance

Output Test Adjustment

4.1” x 4.1” x 2.0”

3 ft long, 2-conductor 22 AWG cable

Environmental

Operating Temperature: –4 to 185°F (–20 to 85°C)

Storage Temperature: –40 to 203°F (–40 to 95°C)

How to Specify & Type

How to Specify

DPG1000L range options

F4L range options

Type

Standard housing

NEMA 4X housing

Range—see table at left

psi = PSIG

torr = TDR

mbar = MBAR

oz/in² = INHG

kg/cm² = KPG

mmH2O = MPH

bar = BAR

g/cm³ = GCM

mmH = CMMH

atm = ATM

VAC = gauge reference vacuum

A = absolute reference

Options

HA

High accuracy, ±0.1% FS ±1 LSD. See table at left for availability.

PM

Panel mount, 4.1” x 4.1”, n/a NEMA 4X

CC

Moisture resistant circuit board conformal coating

CD

Calibration data; 5 test points and date

NC

NIST traceability documentation, 5 points and date

VAC

G = gauge reference pressure vacuum

A = absolute reference

Range codes listed as 2, 20, 200, or 2000 display 1.999, 19.99, 199.9, or 1999 respectively.
Instructions

Precautions

- Read these instructions before using the gauge. Configuration may be easier before installation. Contact the factory for assistance.
- These products do not contain user-serviceable parts. Contact us for repairs, service, or refurbishment.
- Gauges must be operated within specified ambient temperature ranges.
- Outdoor or washdown applications require a NEMA 4X gauge or installation in a NEMA 4X housing.
- Use a pressure or vacuum range appropriate for the application.
- Use fittings appropriate for the pressure range of the gauge.
- Due to the hardness of 316 stainless steel, it is recommended that a thread sealant be used to ensure leak-free operation.
- For contaminated media use an appropriate screen or filter to keep debris out of gauge port.
- Remove system pressures before removing or installing gauge.
- Install or remove gauge using a wrench on the hex fitting only. Do not attempt to turn gauge by forcing the housing.
- Good design practice dictates that positive displacement liquid pumps include protection devices to prevent sensor damage from pressure spikes, acceleration head, and vacuum extremes.

Avoid permanent sensor damage! Do not apply vacuum to non-vacuum gauges or hydraulic vacuum to any gauges.

Avoid permanent sensor damage! NEVER insert objects into gauge port or blow out with compressed air.

Gauges are not for oxygen service. Accidental rupture of a hose or gauge port will react with oxygen.

NEVER connect the gauge wires directly to 115 VAC or permanent damage will result.

Cecomp maintains a constant effort to upgrade and improve its products. Specifications are subject to change without notice. See cecomp.com for latest product information. Consult factory for your specific requirements.

WARNING: This product can expose you to chemicals including lead, nickel and chromium, which are known to the State of California to cause cancer or birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov

Types of Gauges

Gauge reference types read zero with the gauge port open. Bipolar ranges read positive pressure and vacuum in the same units, and zero with the gauge port open. 1000 psi and higher sensor are a sealed reference type. They read zero with the gauge port open are internally referenced to 14.7 psi. Functionally similar to gauge reference sensors. Absolute reference gauges read zero at full vacuum and atmospheric pressure with the gauge port open. With an open gauge port the readings will vary continuously due to the effects of barometric pressure.

Operation

All operating power is supplied by the 4-20 mA current loop. The 2-wire connection allows the DPG1000L and F4L to be used as an indicating transmitter in any 4-20 mA current loop application or as a DC powered gauge.

The output is a continuous analog signal based on the transducer output rather than the display. The output is filtered to improve noise immunity and has a response time of about 50 msc. The temperature compensated piezoresistive transducer features 316 stainless steel wetted parts.

The TEST button, when depressed, switches the display and output loop to a preset level determined by the setting of a Test potentiometer. This is useful for testing the 4-20 mA output signal without having to alter system pressure.

Electrical Connection

Connection to the DPG1000L or F4L is made with the 2-wire cable at the gauge rear. Reversing the connections will not harm the gauge but the DPG1000L and F4L will not operate with incorrect polarity. See the wiring examples below for connecting to a 4-20 mA current loop.

If the 4-20 mA analog output is not required, the transmitter will function as a low voltage powered pressure gauge when connected to any 8 to 32 VDC power supply. Connect the loop (+) supply to the RED lead and the loop (-) supply to the BLACK lead.

Loop Voltage

Select a loop power supply voltage and total loop resistance so that when the loop current is 20 mA, the gauge will have at least 8 VDC at its terminals and not exceed 32 VDC.

For correct operation and to avoid erratic or erroneous readings, the gauge terminal voltage must not fall below 8 VDC. Too large a loop resistance will cause the gauge output to "limit" or saturate before reaching its full 20 mA output. The minimum loop supply voltage may be calculated from the formula:

\[V_{\text{min}} = 8V + (20\text{mA} \times \text{Total loop resistance}) \]

If the terminal voltage of the gauge falls below 8 VDC, erratic operation may occur. This is an indication that the loop supply/voltage/resistance may not allow adequate headroom for reliable operation. This should never occur in normal use. If it does, examine the loop supply/resistance.

Operation

The DPG1000L and F4L are designed for continuous operation. Warm-up time is negligible. The display will show the system pressure or vacuum, and the loop current also will be proportional to the system pressure/vacuum.

Calibration

Gauges are calibrated at the factory using equipment traceable to NIST. There is no need to calibrate the gauge before putting it into service.

Calibration should only be performed by qualified individuals using appropriate calibration standards and procedures.

Gauges can be returned to factory for certified recalibration and repairs. NIST traceability is available.

Calibration intervals depend on your quality control program requirements and as-found data. Many customers calibrate their equipment annually.

The calibration equipment should be at least four times more accurate than the gauge being calibrated. The calibration system must be able to generate and measure pressure and/or vacuum over the full range of the gauge.

A vacuum pump able to produce a vacuum of 100 microns (0.1 torr or 100 millitorr) or lower is required for vacuum and absolute gauges. Warning: application of vacuum to non-vacuum models may result in irreparable damage to the sensor.

Use a stable DC power supply and an accurate mA meter for calibration of loop powered transmitters.

Allow the gauge to equilibrate to normal room temperature (about 20 minutes minimum) before calibration.

1. See rear label of gauge for pressure range.
2. Remove the covers on the Zero and Span controls on the front of the gauge.
3. Loop-powered gauges must be connected to 9-32 VDC during the calibration procedure. The supply voltage has negligible effects on the gauge calibration as long as it is within the stated voltage ranges. Over voltage may result in damage.
4. Internal Zero and Span potentiometers adjust the agreement between the display and the analog output. These normally do not need to be adjusted. If the output does need adjustment, remove the rear cover to access the potentiometers. See image below.
5. Zero for gauge reference pressure or vacuum gauges: With the gauge port open to atmosphere, adjust the Zero potentiometer for a display indication of zero. Output should be 4.0 milliamps.
6. Zero for absolute reference gauges: Zero the vacuum to the gauge. Adjust the Zero potentiometer for a display indication of zero. Output should be 4.0 milliamps.
7. Span for gauge reference pressure gauges and absolute reference gauges: Apply full scale pressure and adjust the Span potentiometer for a display indication equal to full-scale pressure. Output should be 20.0 milliamps.
8. Span for gauge reference vacuum gauges: Apply full vacuum to the gauge. Adjust the Span potentiometer for a display indication equal to full-scale vacuum. Output should be 20.0 milliamps.
9. Verify pressure indications at 0%, 25%, 50%, 75%, and 100% of full scale and repeat calibration as needed to achieve best accuracy over desired operating range.
10. Replace the potentiometer covers, rear cover and screws, taking care not to pinch the wires between the case and the rear cover.

Calibration Preparation

Specifications are subject to change without notice. See ceomp.com for more information.