Cecomp® DSG SaniGauge® Loop Powered Digital Sanitary Pressure Transmitters

DSGL1

Specifications

Ranges and Resolution
See table below. Consult factory for special engineering units. Resolution is fixed as indicated in table.

Accuracy
Accuracy includes linearity, hysteresis, repeatability
Accuracy: ±0.25% of full scale ±1 least significant digit
Sensor hysteresis: ±0.015% FS, included in accuracy
Sensor repeatability: ±0.01% FS, included in accuracy

Display
3.5 digit LCD, 0.5” digit height (indicates to 1999)
3 readings per second nominal display update rate

Controls
Non-interactive zero and span, ±10% range
Output test adjustment: 0-100% range
Retransmission zero and span: Internal potentiometers

Loop Supply Voltage
8 to 32 VDC loop power supply. Reverse polarity protected.
3 ft, 2-cond. 22 AWG cable with stripped and tinned wire ends

Output Characteristics
True analog output, 50 milliseconds typical response time
Gauge terminal voltage must be above 8 VDC at all times.

Test Function
Front panel TEST button, when depressed sets loop current and display to output test level, independent of pressure input.

Sanitary Seal
3-A certified Tri-Clamp flush diaphragm sanitary seal
NEOBEE® M-20 98
All 316L stainless steel construction
Optional electropolish passivation

Weight (approximate)
1.5” gauge: 2 lbs shipping: 3 lbs
2.0” gauge: 2.5 lbs shipping: 3.5 lbs

Housing and Materials
NEMA 4X ABS/polycarbonate case, polycarb. label, rear gasket
Conformal coating on circuit boards for moisture resistance.

Maximum Working Pressure
1.5”: 2 X pressure range
2.0”: 2 X pressure range or 550 psi for 300 psi sensor
Maximum pressure dependent on type of clamping device
112.5% FS out-of-range display: –– or ––

Environmental
Storage temperature: –40 to 203°F (–40 to 95°C)
Operating temperature: –4 to 185°F (–20 to 85°C)
Compensated temperature: 32 to 158°F (0 to 70°C)
Thermal effect due to fill: Up to 1.2 psi from 0 to 70°C
Positional effect: Up to 0.14 psi

How to Specify

<table>
<thead>
<tr>
<th>PSI</th>
<th>Res</th>
<th>inHg</th>
<th>Res</th>
<th>Torr</th>
<th>Res</th>
<th>kPa</th>
<th>Res</th>
<th>cm²</th>
<th>Res</th>
</tr>
</thead>
<tbody>
<tr>
<td>15PSIA</td>
<td>.01</td>
<td>30NHHG</td>
<td>.1</td>
<td>760TRGRA</td>
<td>1</td>
<td>100KPA</td>
<td>.1</td>
<td>1KGCMA</td>
<td>.001</td>
</tr>
<tr>
<td>15PSIVAC</td>
<td>.01</td>
<td>30NHHG</td>
<td>.1</td>
<td>760TRGVAC</td>
<td>1</td>
<td>100KPA</td>
<td>.1</td>
<td>1KGCMA</td>
<td>.001</td>
</tr>
<tr>
<td>±15PSIG</td>
<td>.01</td>
<td>30NHHG</td>
<td>.1</td>
<td>1600TRGRA</td>
<td>1</td>
<td>±100KPA</td>
<td>.1</td>
<td>±1KGCMA</td>
<td>.001</td>
</tr>
<tr>
<td>30PSIA</td>
<td>.1</td>
<td>60NHHG</td>
<td>.1</td>
<td>1000MBAR</td>
<td>1</td>
<td>200KPA</td>
<td>.1</td>
<td>2KGCMA</td>
<td>.001</td>
</tr>
<tr>
<td>30PSIVAC</td>
<td>.1</td>
<td>60NHHG</td>
<td>.1</td>
<td>1000MBARVAC</td>
<td>1</td>
<td>200KPA</td>
<td>.1</td>
<td>2KGCMA</td>
<td>.001</td>
</tr>
<tr>
<td>±30PSIG</td>
<td>.1</td>
<td>60NHHG</td>
<td>.1</td>
<td>±1000MBAR</td>
<td>1</td>
<td>±400KPA</td>
<td>.1</td>
<td>±4KGCMA</td>
<td>.001</td>
</tr>
<tr>
<td>100PSIA</td>
<td>.1</td>
<td>200NHHG</td>
<td>.1</td>
<td>1000MBARG</td>
<td>1</td>
<td>700KPA</td>
<td>.1</td>
<td>7KGCMA</td>
<td>.001</td>
</tr>
<tr>
<td>100PSIVAC</td>
<td>.1</td>
<td>200NHHG</td>
<td>.1</td>
<td>1000MBARVAC</td>
<td>1</td>
<td>700KPA</td>
<td>.1</td>
<td>7KGCMA</td>
<td>.001</td>
</tr>
<tr>
<td>±100PSIG</td>
<td>.1</td>
<td>200NHHG</td>
<td>.1</td>
<td>±1000MBARG</td>
<td>1</td>
<td>±1400KPA</td>
<td>.1</td>
<td>±14KGCMA</td>
<td>.001</td>
</tr>
<tr>
<td>200PSIA</td>
<td>.1</td>
<td>400NHHG</td>
<td>.1</td>
<td>2000MBAR</td>
<td>1</td>
<td>1400KPA</td>
<td>.1</td>
<td>14KGCMA</td>
<td>.001</td>
</tr>
<tr>
<td>200PSIVAC</td>
<td>.1</td>
<td>400NHHG</td>
<td>.1</td>
<td>2000MBARVAC</td>
<td>1</td>
<td>1400KPA</td>
<td>.1</td>
<td>14KGCMA</td>
<td>.001</td>
</tr>
<tr>
<td>±200PSIG</td>
<td>.1</td>
<td>400NHHG</td>
<td>.1</td>
<td>±2000MBAR</td>
<td>1</td>
<td>±2800KPA</td>
<td>.1</td>
<td>±28KGCMA</td>
<td>.001</td>
</tr>
<tr>
<td>400PSIA</td>
<td>.1</td>
<td>1600NHHG</td>
<td>.1</td>
<td>4000MBAR</td>
<td>1</td>
<td>2800KPA</td>
<td>.1</td>
<td>28KGCMA</td>
<td>.001</td>
</tr>
<tr>
<td>400PSIVAC</td>
<td>.1</td>
<td>1600NHHG</td>
<td>.1</td>
<td>4000MBARVAC</td>
<td>1</td>
<td>2800KPA</td>
<td>.1</td>
<td>28KGCMA</td>
<td>.001</td>
</tr>
<tr>
<td>±400PSIG</td>
<td>.1</td>
<td>1600NHHG</td>
<td>.1</td>
<td>±4000MBAR</td>
<td>1</td>
<td>±5600KPA</td>
<td>.1</td>
<td>±56KGCMA</td>
<td>.001</td>
</tr>
<tr>
<td>600PSIA</td>
<td>.1</td>
<td>2400NHHG</td>
<td>.1</td>
<td>6000MBAR</td>
<td>1</td>
<td>5600KPA</td>
<td>.1</td>
<td>56KGCMA</td>
<td>.001</td>
</tr>
<tr>
<td>600PSIVAC</td>
<td>.1</td>
<td>2400NHHG</td>
<td>.1</td>
<td>6000MBARVAC</td>
<td>1</td>
<td>5600KPA</td>
<td>.1</td>
<td>56KGCMA</td>
<td>.001</td>
</tr>
<tr>
<td>±600PSIG</td>
<td>.1</td>
<td>2400NHHG</td>
<td>.1</td>
<td>±6000MBAR</td>
<td>1</td>
<td>±11200KPA</td>
<td>.1</td>
<td>±112KGCMA</td>
<td>.001</td>
</tr>
</tbody>
</table>

Quick Link: cecomp.com/san

NEMA 4X Housing

Food Processing
Dairy and Breweries
Pharmaceutical

How to Specify

Range—see table at left

<table>
<thead>
<tr>
<th>PSI</th>
<th>inHg</th>
<th>Torr</th>
<th>kPa</th>
<th>cm²</th>
</tr>
</thead>
</table>
| psli = PSI | mmHg = MMHG | torr = TRRR | kPa = KPA
| oz/oz = ZIN | kg/cm² = KGC | mbar = MBAR |
| inH2O = INHG | cmH2O = GCM | mmH2O = CMH2O |
| ftH2O = FTH2O | kPa = kPA | atm = ATM |

G = gauge reference pressure
VAC = gauge reference vacuum
A = absolute reference

Range codes listed as 2, 20, 200, or 2000 display 1.999, 19.99, 199.9, or 1999 respectively.

Option—add to end of model number

-E Electro-polished sanitary fitting

Calibration certificates—order separately

CD Calibration data, 5 test points, test date
NC NIST certificate with traceability documentation, 5 test points and date

NEOBEE—Reg TM Stapan Specialty Products, LLC
Tri-Clamp—Reg TM Alfa Laval Inc.
Instructions

Types of Gauges

Gauge reference models read zero with the gauge open. Bipolar ranges read positive pressure and vacuum in the same units, and zero with the gauge port open.

Absolute reference gauges read atmospheric pressure with the gauge port open and zero at full vacuum. With the gauge port open to atmosphere, it is normal for readings to fluctuate due to continuously changing barometric pressure.

Precautions

✓ Read these instructions before using the gauge. Configuration may be easier before installation. Contact the factory for assistance.
✓ These products do not contain user-serviceable parts. Contact us for repairs, service, or refurbishment.
✓ Gauges must be operated within specified ambient temperature ranges.
✓ Use a pressure or vacuum range appropriate for the application.
✓ Use clamp appropriate for the pressure range of the gauge.
✓ Remove system pressures before removing or installing gauge.
✓ Good design practice dictates that positive displacement liquid pumps include protection devices to prevent sensor damage from pressure spikes, acceleration head, and vacuum extremes.
✓ Avoid permanent sensor damage! Do not apply vacuum to non-vacuum gauges or hydraulic vacuum to any gauges.
✓ Avoid permanent sensor damage! NEVER touch surface of diaphragm.
✓ Gauges are not for oxygen service. Accidental rupture of sensor diaphragm may cause oil inside seal to react with oxygen.
✓ NEVER connect the gauge wires directly to 115 VAC or permanent damage will result.

Description

All operating power is supplied by the 4-20 mA current loop. The 2-wire connection allows the DSGL1 to be used as an indicating transmitter in any 4-20 mA current loop application or as a DC powered gauge.

The output is a continuous analog signal based on the transducer output rather than the display. The output is filtered to improve noise immunity and has a response time of about 0.05 sec. The sensor is a temperature compensated piezoresistive transducer.

The TEST button, when depressed, switches the display and loop current to a preset level determined by the setting of a Test potentiometer. This is useful for testing the 4-20 mA current loop.

Electrical Connection

Connection to the DSGL1 is made with the 2-wire cable at the gauge rear. Reversing the connections will not harm the gauge but the DSGL1 will not operate with incorrect polarity. See the wiring examples below for connecting to a 4-20 mA current loop.

If the 4-20 mA analog output is not required, the transmitter will function as a low voltage powered pressure gauge when connected to any 8 to 32 VDC power supply. Connect the loop (+) supply to the RED lead and the loop (-) supply to the BLACK lead.

Loop Voltage

Select a loop power supply voltage and total loop resistance so that when the loop current is 20 mA, the gauge will have at least 8 VDC at its terminals and not exceed 32 VDC.

For correct operation and to avoid erratic or erroneous readings, the gauge terminal voltage must not fall below 8 VDC. Too large a loop resistance will cause the gauge output to “limit” or saturate before reaching its full 20 mA output. The minimum loop supply voltage may be calculated from the formula:

\[V_{min} = 8V + (20mA \times \text{Total loop resistance}) \]

If the terminal voltage of the gauge falls below 8 VDC, erratic operation may occur. This is an indication that the loop supply/resistance may not allow adequate headroom for reliable operation. This should never occur in normal use. If it does, examine the loop supply/resistance.

Operation

The DSGL1 is designed for continuous operation. Warm-up time is negligible. The display will show the system pressure or vacuum, and the loop current also will be proportional to the system pressure/vacuum.

Calibration

1. Zero for gauge reference pressure or vacuum gauges: With the gauge port open to atmosphere, adjust the Zero potentiometer for a display indication of zero. Output should be 4.0 milliamps.

2. Span for gauge reference pressure or vacuum gauges: With the gauge port open to atmosphere, adjust the Span potentiometer for a display indication equal to full-scale pressure. Output should be 20.0 milliamps.

3. Loop-powered gauges must be connected to 9-32 VDC during the calibration procedure. The supply voltage has negligible effects on the gauge calibration as long as it is within the stated voltage ranges. Over voltage may result in damage.

4. Internal Zero and Span potentiometers adjust the agreement between the display and analog output. These normally do not need to be adjusted. If the output does need adjustment, remove the rear cover to access the potentiometers. See image below.

Test Function

When the front-panel TEST button is held depressed, the display and loop current are switched, independent of the system pressure, to a test level determined by the setting of the Test potentiometer. This test mode will allow setup and testing of the current loop by switching to this test level whenever desired without having to alter the system pressure.

To set the test output level, see gauge label for location of Test potentiometer. Press and hold the front-panel TEST button and adjust the Test potentiometer to set the display and loop current to the desired test level.

Voltage Compliance for 4-20 mA Current Loop

Calibration Preparation

Gauges are calibrated at the factory using equipment traceable to NIST. Gauges are calibrated in an upright position at normal ambient temperatures (approx. 20°C). There is no need to calibrate the gauge before putting it into service unless the process temperature and gauge position deviate from normal.

Calibration should only be performed by qualified individuals using appropriate calibration standards and procedures. Calibration intervals depend on your quality control program requirements, although many customers calibrate annually.

The calibration system must be able to generate and measure pressure/vacuum over the full range of the gauge and should be at least four times more accurate than the gauge being calibrated.

A vacuum pump able to produce a vacuum of 100 microns (0.1 torr or 100 millitorr) or lower is required for vacuum gauges. Warning: application of vacuum to non-vacuum models will result in damage to the sensor.

Allow the gauge to acclimate to the calibration temperature for at least 60 minutes. Calibrate the gauge at the same temperature as the process with the gauge oriented in the same position.

Use a stable DC power supply and an accurate mA meter for calibration of loop powered transmitters.

CECOMP

1220 American Way Libertyville, IL 60048
800-942-0315
cecomp.com